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The Air Force Wright Research and Development Center's Aero Propulsion and Power
Laboratory (WRDC/PO) and the National Aeronautics and Space Administration's Lewis
Research Center (NASA LeRC) share a common interest in developing advanced propulsion
systems for commercial and military aerospace vehicles which require efficient acceleration and
cruise operation in the Mach 4-6 flight regime. The principal engine of interest is the

turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, super-
charged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest.
Over the past months careful planning and program implementation have resulted in a number
of development efforts that will lead to a broad technology base for these combined cycle
propulsion systems. Individual development programs are underway in thermal management,
controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems,
gas turbines and ramjet ramburners. ..

In 1986, NASA LeRC and WRDCfPO initiated studies with Rolls-Royce, General Electric, and
Pratt and Whitney to evaluate and configure advanced combined cycle propulsion systems/fueis
for future mission applications. Two missions were selected; a long duration cruise vehicle
(Mach 4-6) and a horizontal takeoff two stage-to-orbit vehicle. The three studies were
consistent in selecting turbomachinery based combined cycle engines as the preferred cycle.

A number of critical component technologies were identified during the studies which must be
investigated before a turbomachinery based combined cycle engine can be demonstrated. A few
of the more critical component technologies are discussed.

THERMAL MANAGEMENT

The maximum speed for high Mach aircraft will be established by the thermal management
system. Design practice has been to employ fuel/air heat exchangers to provide cooling air for
many of the engine components while the airframe was cooled by passive means. Flight in the
Mach 4-6 regime can result in leading edge temperature as high as 1800_F from aerodynamic
heating. The engines will operate with compressor exit and turbine entrance temperatures that
approach the limits of standard structural materials. The thermal loads from the airframe,
avionics, crew environment, and engines will increase greatly above the levels normally handled
by the incoming air and standard hydrocarbon fuels. Therefore, thermal management systems
for the high Mach applications must resort to the heat sink capability of advanced fuels since

even the stagnation air temperature will exceed the materials structural limit in many cases.

Endothermic hydrocarbon fuels show promise of handling the higher heat loads of the high

Mach aircraft up to flight speeds exceeding Mach 6.0. Fuel temperatures of 1400_ and

pressures to 500 psi are indicated after passage through the thermal management system loop.
Advances in every component of the fuel management system will be required including pumps,
regulators, tubing, connectors, heat exchangers, catalytic reactors, etc. System architecture
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studieswill be required to ensure proper arrangementof componentsfor minimum weight
systen_.

AIR INTAKE SYSTEMS

The _ intake system for the high Mach aircraft poses a number of unique design requirements
not fro,rod in lower speed applications. Matching the air capture schedule versus engine airflow
demm_ over a broad speed range requires comprom/se at the operating extremes. F.xcem
spillNp drag at low speed requires higher thrust since spillage drag can be as much as 25% of
the weal vehicle drag at transonic conditions. Boundary layer limit will be required to limit the
amoum of low energy air entering the propulsion system. Control can be achieved through
boumIary layer bleed or regulating the temperature ratio between the freestrcam air and the

inkt sarface. Temperature control of the inlet surface may unduly complicate the thermal

manalgement system. It has been shown that 1% bleed flow can cause up to 5% reduction in net
thrust. The inlet designer must account for the air flow that is required to cool the engine hot
sectim_ lubrication system, and exit nozzle. Cooling air flow up to 15% of that captured may be

r_ Inlet physical size may in fact be the largest design problem. Preliminary designs of
air/makes show that the configurations will be as much as three times larger and weigh four
times l_eavier than those for Mach 1.5 aircraft. Innovative thinking will be required to keep the

inteS .,short and light.

EXIT NOZZLE

The _e exit nozzle will be required to operate efficiently over a wide speed range. Optimal
contmring of the expansion surface will be necessary since even a 1% change in gross-thrust
coelUa_nt can result in an 8% reduction in net thrust. Variable geometry components will be

reqmined to accommodate the large expansion ratios, up to 40:1 at Mach 6, to expand the

exhmm flow to ambient pressure. Variable geometry by its very nature poses a sealing problem
and ,ran result in leakage of very hot exhaust gases, around 450if'R, into the actuator
comgmnments. Nozzle structure and cooling become critically important at these high speed

coral, lions. Nozzle size and weight problems are magnified with variable geometry and added
that must be taken into account. Preliminary nozzle designs indicate that weight and

size my be as much as four times that of a conventional nozzle for a Mach 1.5 aircraft.

RAMJET COMBUSTOR (RAMBURNER)

The nmmburner must withstand the thermal environment and structural loads from Mach 1.5 to

6.0. I[ the mission application happens to involve a man-rated system, the structural duty cycle
can etend to many cycles for extended periods of time. As a structural goal, a duration of two
houmper flight for 250 flights seems reasonable. To minimize the size of the ramburner cross-
sectim_ stoichiometric fuel/air operation could be required with associated gas temperatures
arouml 4500°R. Ramburner walls are likely to be cooled with air or direct fuel cooling in a

regenerative structure. Flameholders and fuel injectors will likely be fixed instream devices with

ass(x_ted thermal cooling problems. Low air temperature (e.g. low speed) ramburner operation
may require a pilot excessively large flameholder for flame stabilization. These are contrary to
the reeguirements at high temperature where fuel/a/r autoignition will be achieved easily. Prior
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combustiondata suggestthat the mixing limited condition existsat high temperature and more
instream fuel injectors maybe neededto achievehigh efficiency. Liquid and gaseous fuel
injection will be required and will add further complication to the injector design.

COMPONENT INTEGRATION

Component integration will be the ultimate challenge in demonstrating a complete propulsion
system that has good overall performance and minimum weight. Mode transition control must

be accomplished smoothly without causing disruption of any component. For example, the gas
turbine compressor should have wide stall margin limits and stable windmilhn" g characteristics
for smooth shutdown and restart. For sustained speeds above Mach 4, it will become necessary
to thermally isolate the gas turbine since the air temperature will be too high for the structural
materials and bearing lubrication system. Engine thermal control must consider cooling air flow
path and flow rate requirements to maintain structural integrity. Air flow management for the
engine internally will require variable geometry in the form of compressor inlet guide vanes or
some air valve in the inlet subsonic diffuser to seal and direct the air flow to the appropriate
operating mode. Engine controls will necessarily be more complex than usual to maintain
optimum settings for the inlet, nozzle and internal engine components.

OTHER CONTRIBUTING PROGRAMS INCLUDE

The heat pipe radiation cooling for high-speed aircraft propulsion program, the ceramic
regenerator program, the endothermic fuel/catalyst development and evaluation program, the

endothermic fuels program, the inlet and nozzle concepts for advanced airbreathing propulsion

program, fundamental ramburner combustion studies, high speed turboramjet combustor
development program, and the high mach turbine engine technology program.

The High Mach Turbine Engine Technology to be demonstrated over this next decade will open

up a new era in mission applications and tactics by doubling the speed range capability of
current systems. High speed intercept and early warning equates to effective deterrence; a
cornerstone in our strategic defense philosophy. Timely reconnaissance and surveillance
improves response flexibility and decision time so that measured responses can be made without
overreacting to situations. In fluid situations where targets and scenarios are constantly

changing, rapid strike capability keeps time urgent targets at risk. A simple force projection to
show national interest/resolve might prevent potential adversaries from taking steps to increase
hostilities. High speed can also improve system survivability and provides a hedge against anti-
stealth technology breakthroughs.

t

Commercial applications for this engine technology include high speed passenger/transport
aircraft and accelerator stages for horizontal takeoff, earth-to-orbit launch vehicles. As the

Pacific Basin area evolves as a strong economic area, timely access to this region from the

United States and Europe for both passengers and materials will be important economically.

Interest in low-cost access to space and the ever increasing backlog of payloads has fueled

national interest in alternate methods to achieve launch capabilities. Reusable launch vehicles
have been studied by a number of countries. The turboramjet using hydrogen fuel has in many
cases shown to be the preferred low speed propulsion system for these vehicles.
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This technology will allow the United Statescommercial aviation industry to maintain a clear
leadership in response to foreign pressures from Germany, France, Japan, and the Soviet Union,
and to continue to be a strong source for domestic and international aircrafL
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COMBINED CYCLE ENGINE APPLICATIONS

P

NASA/AF HIGH MACH TURBINE ENGINE
I

• OBJECTIVE:

• STATUS-

TO CONDUCT DESIGN STUDIES AND CRITICAL

COMPONENT EXPERIMENTS OF ADVANCED

TURBINE ENGINE SYSTEMS WHICH OPERATE

IN THE MACH 4-6 REGIME

TWO (2) CONTRACT AWARDS

NA3-26051 - GENERAL ELECTRIC

NA3-26052 - PRATT & WHITNEY

TECHNICAL WORK BEGINS IN EARLY JUN 90

FIVE (5) YEAR TECHNICAL EFFORTS THRU JUN 95

113,000 MANHOURS OF EFFORT EACH

ORIGINAL PA(]E IS

OF POOR QUALITY
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CRITICAL ENGINE COMPONENT TECHNOLOGIES
Needed For Both TRJ and ATR Applk:allons

COMBINED CYCLE ENGINES

RECENT ACCOMPLISHMENTS

DESIGN STUDIES

• DESIGN STUDIES COMPLETED ON MACH 5.S TTFRJ & MACH 5.0 AceTR

= CRITICAL COMPONENTS IDENTIFIED

• NASA LANGLEY FUNDED MACH S WWE RIDER USING OVER/UNDER TRJ

TURBORAMJET

• INITIA_ED MAN RATED HEAT EXCHANGER REACTOR

• INITIATED RAMBURNER FOR DEMONSTRATION IN WLTEST CELL 22

AIR TURBOROCKET

• INNOVATIVE COMPRESSION CONCEPT PERFORMANCE

DEMONSTRATED WITH SIMULATED NORPRR 12 FUEL PRODUCTS

• INITIATED DEVELOPMENT OF FUEL COOLED STRUCTURE

HEAT .EXCHANGER/REACTOR
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